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An encounter — evasion differential game for several target sets is analyzed,
The players' piecewise-postition strategies are determined and it is established
that an €-equilibrium situation exists in the class of these strategies, The
material in this paper is closely related with the investigations in [1, 2].

1. Let the motion of a controlled system be described by the equation
= f(t x u,v), f:ltg, ©) X R* X P X Q— R" (L1

where [ is a continuous function and P ( RP and Q - RY are compacta, It
is assumed that
l=" f(t 2, u, ) <CTx (1 111P), (8 2, u, v) & [f, o) X R™X
P xgQ

17 (8 2D, u, v) — f (8 2@, u, V)| < Ag|] 2® — z® ||
(t, 2D, u, V)G X P X Q, i=1,2

where z'f is the scalar product of vectors x and f,||z|[2 = z'z, % isa constant
number and G is any bounded domain from [Z,, co) X R™ It is assumed as well
that the condition
min max s'f (¢, z, u, v) = max mins'f (¢, x, u, v) (1.2
weEP ve=Q ve=Q usP
se= R, (¢ z) < [ty o) X R"
is fulfilled.

Compacta My and N, k = 1,. .., m (M, are the targetsetsand N is a
phase limitation), are specified in space R™* . For a continuous function zl-]:
[ty, ) — R™ we define the set

Tyl ) ={u(, zlth M, ¢ ziheEN, << 1}
We further set
(@] = { minTx (@ [-1), Tx(zl-D+*
. - oo, Tyx[-) =

Here the symbol min 7 denotes the smallest of the numbers occurring inset T .

Thus, Tt (x [-]) is the instant that point (¢, z [2]) first hits the set M} under the

condition that the inclusion (¢, z [¢]) & N was fulfilled up to contact with My .
The payoff vy in the differential game being examined is determined by the equal-

ity
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vl =0c@m@lD,. ... Tml]) (1.3
(z [-1: [2,, oo) = R*, a: 4, o™ = (— o0, oo])

Here z [-] is a realized motion of the system and ¢ is a prescribed function satisfy-
ing the following conditions:

1) function o takes finite values and is continuous on the set [z, 00)™

2) 0(T1,. .., Tpy) = 00 ifevenone Ty = 00;

3) theset o™ ((— oo, c]) isbounded for any finite number ¢;

4) the inequality

6 (T o vy Timty Ty Tigk ve v vy Tm) S O(T,. . oy Ticg T,

Titls - - +» Tm)
is valid for any collections (T1,. . ., Ti=gs Ti s Ti+1s+ - -» Tm) and (V. o oy Ty,
T, Tiss - - -» Tm), where ;" <{ 1;".
The conditions indicated here are satisfied, for instance, by the function o (t,. . .,
Tyw) = max Ty for k=1,. .., m. Inthiscase y (z[-]) —£ isthe time by

which the motion z [-] makes contact with all sets M) (k = 1,. . ., m) inside V.
It is assumed that the first player, governing the control u, strives to minimize the
value of payoff p , while the second player, choosing the control v, maximizes
the value of 7.

The functional y of (1. 3) is lower-semicontinuous; therefore (see [1]), in the
game being analyzed an & -equilibrium situation exists in the class of pure strategies
U-——u(zl;ty tl) and V= v (z[-; £, £]) with complete memory. It is estab-
lished below that the & -equilibrium situation is preserved if the players use not all
the information on the trajectory z [-; £y, t] = (z [&], £, <{ & <{ ¢) realized by in-
stant { , but only the information on the position (t, z [¢]) realized and on certain
numbers t; defined for this trajectory, Informally these numbers can be defined as
the instants of encounter of position (¢, z[¢]) with the target sets M. Pure position
strategies U -+ u (¢, x) and V = v (£, z) are used in each interval between such in-
stants, Thus, an equilibrium situation in the game being examined is achieved in the
class of piecewise~position strategies,

2. Let us present the formal definitions of the piecewise-position strategies and of

the motions generated by them. The collection of mappings

a: (8 z, f,. .., ty) > a(t, z, f1,. . ., ty) (2.1

Qrixle; by > @zl 8o, t) (B=1,..., m)

t e [ty ), xl; to, tl = CMty, ¢
is called the first player's piecewise-positionstrategy [, Here C™ |2, t] is the space of
continuous functions x[-; &, f]: [4,, t1—> R™ the functionals @; are defined on
the set C, = {{JC" £y, t]: te<C £<C oo} and take values from [£,, ool; the fun-
ction & is defined on the set [£,, 00) X R"™ X [¢,, oo]™ and takes values from co-
mpactum P. Each of the functionals ¢, satisfies the following condition, Let #*
& [y, 00), z* [*; &, t*l = C"l¢,, t*], t = [t,, t*] and z* [-; £,, t] be the
restriction of function z* [.; £,, t*] oninterval [£,, £]. Then either @ (z* [-;
£y, t*1) = oo, and in this case @i (z* [-; &), £]) = oo for all ¢ E[f,, t*], or @
(z* [ o, t*]) = t* < ¢*, and in this case gy (z* [-1£, t]) = {oowhen £, <
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t< f*, t* when §* <(¢ <(t*}. Thus, functional g takes no more than two
values along any motion z [-] , and the change from one value to the other can take
place no more than once, The second player's piecewise~position strategy V is de-
fined analogously, The mappings

B : lty, 20) X R™ X [t5, oo™~ Q (2.9
Yt Cp =y, @] (k=1,..., m)

defining V satisfy the same conditions (2. 1) indicated for U .

The motions generated by U of (2, 1) are introduced in the following manner.
Suppose that the first player has chosen a partitioning A = {{7;, Tix1):i = 0,4,. . .}
Ty — 00 as i—>00; Ty = fo}. We assume that under this partitioning the U of
(2. 1) forms a piecewise-constant control ualtl (£ > #,) by the mle

ua [t = a (v, za [v; o, Tl @1 (2a [+ 0, W), .

Om @als; to, ) . <TE< T (1=0,1,.. )
where a4l-; £, T;] is a solution of system (1. 1), which was realized on tne interval
[#5, 7;] and corresponding to control %a [#] and to some measurable control v [f] &
Q (£, << t<<'T;) selected by the second player. The motions zalfl (£ > ;) thus
defined are called approximate and are denoted by the symbol Za [-; o, 2o, U, v
[«]], where Ty = Za [#,] is the initial state and v [-] is a realization of the second
player's control,

By the symbol X (#, x, U) we denote the collection of functions z [-]:
[te, 00)— R™ for each of which there exists a sequence of approximate motions s,
[+ toy o5, U, vy [+ 1), converging uniformly on every finite interval [£y, #4]to funct-
ion z {.] and satisfying the conditions Z,,; — 2, and sup; (Tyr,; — Ti,5) = 0
as j—» oo. The elements of set X (&, Zq, U) are called the system’s motions gen-
erated by the first player's piecewise-position strategy U/ . The motions z[-] &
X (o, %y, V)generated by the second player's piecewise-position strategy V' are in-
troduced analogously, We note that any pair 7 and V can be realized simultaneous-
ly in the differential game, since the motions z [-] & X (¢, x, U) [N X (4,
Zy, V) generated by such a pair (U, V) can always be defined.

Theorem. Let condition (1,2) be fulfilled. Then an g&-equilibrium situation
exists in the class of piecewise-position strategies U and V of forms (2. 1) and (2. 2),
i,e., the first player's piecewise~-position strategy [J° exists and for any & > 0 the
second player's piecewise-position strategy V® exists, such that

sup v (X (to» oy U°)) = miny sup ¥ (X (fo, @0y U)) = Vo
inf y (X(f0, o, Ve)) + & > supy inf 'Y (X (to, Zo» V) =%

This theorem can be proved by the scheme in [1]. Strategies U® and V® canbe
determined as strategies extremal to appropriate bridges, Let us describe the extremal
strategy U° . In this strategy the functionals ¢y~ associate with function z [ £y,
t] either a number f; (£x <C ¢), which can informally be defined as the instant that
the point (&, x [E]) first encountered set My, or the improper number oo, if this
encounter did not take place on the interval [£,, ¢] . The function o° is defined as
follows. In the space of positions (f, x) we define a u-stable W, as well as the u -
stable bridges W; (f,, . - -» tk].) corresponding to the collections of parameters fy,
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Ll .- < Bg; << 0 A<igsKm—1). For the collection Iy = O,
k=1, .. m, thé function

a’ (', f1,. « + tm): (t, x)—" o (t7 T, by v o tm) (2.3

is defined as the position strategy extremal to bridge Wy. For the collection (fy,.
-y &m), where ty, < £, <C .+ - S ;<< 00, and the remaining f = 0, the funct-
ion @ (-, &1, . ., &) of (2. 3) is the posttlon strategy extremal to bridge W_i (tk,,

oty For the collection (fy,. .., Im), where # << oo, k=1, .., m,
the function @° (+, f1s+ + +» tm) of (2.3) is chosen arbitrarily,

Thus, on the interval [£,, #)the control u [£] is formed as a position strategy
extremal to bridge Wy; here &, is the instant that an encounter first occurs with
one of sets My (with set My,). Then, on thenext interval [Zx, tx.) before the en-
counter with the next set (with set My, ) the control u [£] is called the position strate-
gy extremal to bridge Wi (8,), and so on, We note that the bridges used here are
constructed sequentiaily, beginning with the determination of bridges W1 (Zk - -

“ tkm_l) and terminating on the target set M kp DO later than at the instant  f ..
The parameters (f1, - «s tm) indicated here are such that @ (t1,. . ., tm) < 0,
where ¢ is some prescribed nimber, this being the result guaranteed to the first play-
er if he uses the extremal strategy [/°. Next, all possible bridges W, _a (¢4, . . .,
frmg)r+ - -+ W1 (f) and W, are determined in succession. These bridges are such
that the extremal strategy [J° leads system (1. 1) from each of the bridges W; onto
one of the bridges W1 and simultaneously onto one of the remaining target sets My;
by the same token strategy U° ensures the solution of the problem facing the first
player.

8. Let us consider the case when the fulfilment of condition (1. 2) is not presum-
ed, We define a strategy U" as the collection of m functionals @y of the form in-
dicated above and of function a? : [£y, 00) X R™ X @ X [t,, 0co]™ — P.We ass-
ume that this function is Borel- measurable in the variable v & Q. We note that for
fixed values of Z1,. . ., Iy the function & (-, &, - .y Em) ¢ [£g, 00) X R™ X
Q — Pis a counter-strategy (see [1], p, 356). To determine the approximate motions
za (-3 to %oy U v[-1] we assume that for a chosen partitioning A = {[7;,
) ¢ = 0,4,. ..} the strategy [J® forms the first player's control by the mle

ua [t] = a® (t;, za [vs; o, wl, v [£], @1 (za [ &, Tl),e o«
Om (2o L5t W) T << E< Tyn (1=0,1,...)

where v [£] (£ > t,) is 2 measurable realization of the second player's control. Fur-
ther, just as in the case of piecewise-~position strategy U/ , we determine the set
X (o, Zo, U®) of motions generated by strategy U” . Strategy U® can be realized
in pair with V' , The theorem on the existence of the &-equilibrium situation is val-
id for the differential game (1. 1), (1. 3) analyzed in the class of first player's strategies
U® mentioned here and in the class of second player's piecewise-position strategies
V . The eg-equilibrium situation obtains as well for the class of first player's strat-
egies U and of second player's strategies V*. The definition of these strategies V*
is obtained from the definition of ¥V by replacing in (2. 2) the function f by the fun-
ction B*: [ty, o0) X R™ X P X [¢t,, o]™— Q. The theorem on the existence
of the &-equilibrium situation in differential game (1. 1), (1. 3) is valid also for the
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class of mixed piecewise-position strategies U and ¥ of both players, To determ-
ine these strategies the functions o and f§ in (2. 1) and (2, 2) should be replaced by
the functions & : [£,, 00) X R™ X [t,, oo™ — P and B : [£,, o) X R™ X [,
oo™ — @ , where P and ()‘ are sets of probability measures normed on compacta
P and Q, respectively. In the time intervals wherein not even one of the function-
als @k (or Px ) changes its value, the strategy U (or V )forms the system's mot-
ions as a mixed position strategy (see [1] ).

The authors thank N, N, Krasovskii for posing the problem and for valuable advice.
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