GAME PROBLEMS ON ENCOUNTER WITH *m* TARGET SETS

PMM Vol. 43, No. 2, 1979, pp. 204-208
M. S. GABRIELIAN and A. I. SUBBOTIN (Yerevan and Sverdlovsk) (Received September 26, 1978)

An encounter — evasion differential game for several target sets is analyzed. The players' piecewise-postition strategies are determined and it is established that an \mathcal{E} -equilibrium situation exists in the class of these strategies. The material in this paper is closely related with the investigations in [1, 2].

1. Let the motion of a controlled system be described by the equation

$$x^{*} = f(t, x, u, v), \quad f: [t_{0}, \infty) \times \mathbb{R}^{n} \times \mathbb{P} \times Q \rightarrow \mathbb{R}^{n}$$
 (1.1)

where f is a continuous function and $P \subset R^p$ and $Q \subset R^q$ are compacta. It is assumed that

$$\begin{aligned} |x' f(t, x, u, v)| &\leq \varkappa (1 + ||x||^2), \quad (t, x, u, v) \in [t_0, \infty) \times R^n \times \\ P \times Q \\ || f(t, x^{(1)}, u, v) - f(t, x^{(2)}, u, v)|| &\leq \lambda_G || x^{(1)} - x^{(2)} || \\ (t, x^{(i)}, u, v) \in G \times P \times Q, \quad i = 1, 2 \end{aligned}$$

where x'f is the scalar product of vectors x and f, $||x||^2 = x'x$, \varkappa is a constant number and G is any bounded domain from $[t_0, \infty) \times \mathbb{R}^n$. It is assumed as well that the condition

$$\min_{u \in P} \max_{v \in Q} s'f(t, x, u, v) = \max_{v \in Q} \min_{u \in P} s'f(t, x, u, v)$$

$$s \in R^{n}, \quad (t, x) \in [t_{0}, \infty) \times R^{n}$$
(1.2)

is fulfilled.

Compacta M_k and N, k = 1, ..., m (M_k are the target sets and N is a phase limitation), are specified in space R^{n+1} . For a continuous function $x[\cdot]$: $[t_0, \infty) \rightarrow R^n$ we define the set

 $T_k (x [\cdot]) = \{\tau: (\tau, x [\tau]) \in M_k, (t, x [t]) \in N, t_0 \leqslant t \leqslant \tau\}$ We further set

$$\pi_k(x[\cdot]) = \begin{cases} \min T_k(x[\cdot]), & T_k(x[\cdot]) \neq \emptyset\\ \infty, & T_k(x[\cdot]) = \emptyset \end{cases}$$

Here the symbol min T denotes the smallest of the numbers occurring in set T. Thus, $\tau_k (x [\cdot])$ is the instant that point (t, x [t]) first hits the set M_k under the condition that the inclusion $(t, x [t]) \in N$ was fulfilled up to contact with M_k .

The payoff γ in the differential game being examined is determined by the equality

$$\begin{split} \gamma \left(x \left[\cdot \right] \right) &= \sigma \left(\tau_1 \left(x \left[\cdot \right] \right), \ldots, \tau_m \left(x \left[\cdot \right] \right) \right) \\ \left(x \left[\cdot \right] : \left[t_0, \infty \right) \to R^n, \sigma : \left[t_0, \infty \right]^m \to \left(-\infty, \infty \right] \right) \end{split}$$
(1.3)

Here $x[\cdot]$ is a realized motion of the system and σ is a prescribed function satisfying the following conditions:

- 1) function σ takes finite values and is continuous on the set $[t_0, \infty)^m$;
- 2) $\sigma(\tau_1, \ldots, \tau_m) = \infty$ if even one $\tau_k = \infty$;
- 3) the set $\sigma^{-1}((-\infty, c])$ is bounded for any finite number c;
- 4) the inequality
- $\sigma (\tau_1, \ldots, \tau_{i-1}, \tau_i', \tau_{i+1}, \ldots, \tau_m) \leqslant \sigma (\tau_1, \ldots, \tau_{i-1}, \tau_i'', \tau_{i+1}, \ldots, \tau_m)$

is valid for any collections $(\tau_1, \ldots, \tau_{i-1}, \tau_i', \tau_{i+1}, \ldots, \tau_m)$ and $(\tau_1, \ldots, \tau_{i-1}, \tau_i'', \tau_{i+1}, \ldots, \tau_m)$, where $\tau_i \ll \tau_i''$.

The conditions indicated here are satisfied, for instance, by the function $\sigma(\tau_1, \ldots, \tau_m) = \max \tau_k$ for $k = 1, \ldots, m$. In this case $\gamma(x[\cdot]) - t_0$ is the time by which the motion $x[\cdot]$ makes contact with all sets M_k $(k = 1, \ldots, m)$ inside N. It is assumed that the first player, governing the control u, strives to minimize the value of payoff γ , while the second player, choosing the control v, maximizes the value of γ .

The functional γ of (1.3) is lower-semicontinuous; therefore (see [1]), in the game being analyzed an ε -equilibrium situation exists in the class of pure strategies $U \div u$ $(x [:; t_0, t])$ and $V \div v$ $(x [:; t_0, t])$ with complete memory. It is established below that the ε -equilibrium situation is preserved if the players use not all the information on the trajectory $x [:; t_0, t] = (x [\xi], t_0 \leqslant \xi \leqslant t)$ realized by instant t, but only the information on the position (t, x [t]) realized and on certain numbers t_k defined for this trajectory. Informally these numbers can be defined as the instants of encounter of position (t, x[t]) with the target sets M_k . Pure position strategies $U \div u(t, x)$ and $V \div v(t, x)$ are used in each interval between such instants. Thus, an equilibrium situation in the game being examined is achieved in the class of piecewise-position strategies.

2. Let us present the formal definitions of the piecewise-position strategies and of the motions generated by them. The collection of mappings

$$\begin{aligned} \alpha: (t, x, t_1, \ldots, t_m) &\to \alpha (t, x, t_1, \ldots, t_m) \\ \varphi_k: x [\cdot; t_0, t] &\to \varphi_k (x [\cdot; t_0, t]) \quad (k = 1, \ldots, m) \\ t &\in [t_0, \infty), \quad x [\cdot; t_0, t] \in C^n[t_0, t] \end{aligned}$$
(2.1)

is called the first player's piecewise-position strategy U. Here $C^n[t_0, t]$ is the space of continuous functions $x[\cdot; t_0, t]: [t_0, t] \to R^n$; the functionals φ_k are defined on the set $C_* = \{\bigcup C^n[t_0, t]: t_0 \leqslant t < \infty\}$ and take values from $[t_0, \infty]$; the function α is defined on the set $[t_0, \infty) \times R^n \times [t_0, \infty]^m$ and takes values from compactum P. Each of the functionals φ_k satisfies the following condition. Let $t^* \in [t_0, \infty), x^*[\cdot; t_0, t^*] \in C^n[t_0, t^*], t \in [t_0, t^*]$ and $x^*[\cdot; t_0, t]$ be the restriction of function $x^*[\cdot; t_0, t^*]$ on interval $[t_0, t]$. Then either φ_k ($x^*[\cdot; t_0, t^*]$) = ∞ , and in this case φ_k ($x^*[\cdot; t_0, t]$) = ∞ for all $t \in [t_0, t^*]$, or φ_k ($x^*[\cdot; t_0, t^*]$) = $t_k^* \leqslant t^*$, and in this case φ_k ($x^*[\cdot; t_0, t]$) = $\{\infty \text{ when } t_0 \leqslant$ $t < t_k^*, t_k^*$ when $t_k^* \ll t \ll t^*$. Thus, functional φ_k takes no more than two values along any motion $x[\cdot]$, and the change from one value to the other can take place no more than once. The second player's piecewise-position strategy V is defined analogously. The mappings

$$\beta : [t_0, \infty) \times \mathbb{R}^n \times [t_0, \infty]^m \to Q$$

$$\psi_k : C_* \to [t_0, \infty] \quad (k = 1, \dots, m)$$

$$(2.2)$$

defining V satisfy the same conditions (2.1) indicated for U.

The motions generated by U of (2, 1) are introduced in the following manner. Suppose that the first player has chosen a partitioning $\Delta = \{[\tau_i, \tau_{i+1}): i = 0, 1, \ldots; \tau_i \rightarrow \infty \text{ as } i \rightarrow \infty; \tau_0 = t_0\}$. We assume that under this partitioning the U of (2, 1) forms a piecewise-constant control $u_{\Delta}[t]$ ($t \ge t_0$) by the rule

$$u_{\Delta} [t] = \alpha (\tau_i, x_{\Delta} [\tau_i; t_0, \tau_i], \varphi_1 (x_{\Delta} [\cdot; t_0, \tau_i]), \dots$$

$$\varphi_m (x_{\Delta} [\cdot; t_0, \tau_i]) \tau_i \leqslant t < \tau_{i+1} (i = 0, 1, \dots)$$

where $x_{\Delta}[\cdot; t_0, \tau_i]$ is a solution of system (1. 1), which was realized on the interval $[t_0, \tau_i]$ and corresponding to control $u_{\Delta}[t]$ and to some measurable control $v[t] \in Q$ ($t_0 \leq t < \tau_i$) selected by the second player. The motions $x_{\Delta}[t](t \geq t_0)$ thus defined are called approximate and are denoted by the symbol $x_{\Delta}[\cdot; t_0, x_0, U, v$ $[\cdot]]$, where $x_0 = x_{\Delta}[t_0]$ is the initial state and $v[\cdot]$ is a realization of the second player's control.

By the symbol $X(t_0, x_0, U)$ we denote the collection of functions $x[\cdot]$: $[t_0, \infty) \rightarrow \mathbb{R}^n$ for each of which there exists a sequence of approximate motions x_{Δ_j} $[\cdot; t_0, x_{0,j}, U, v_j [\cdot])$, converging uniformly on every finite interval $[t_0, t_*]$ to function $x[\cdot]$ and satisfying the conditions $x_{0,j} \rightarrow x_0$ and $\sup_i (\dot{\tau}_{i+1,j} - \tau_{i,j}) \rightarrow 0$ as $j \rightarrow \infty$. The elements of set $X(t_0, x_0, U)$ are called the system's motions generated by the first player's piecewise-position strategy U. The motions $x[\cdot] \in X(t_0, x_0, V)$ generated by the second player's piecewise-position strategy V are introduced analogously. We note that any pair U and V can be realized simultaneously in the differential game, since the motions $x[\cdot] \in X(t_0, x_0, U) \cap X(t_0, x_0, V)$ generated by such a pair (U, V) can always be defined.

The ore m. Let condition (1.2) be fulfilled. Then an ε -equilibrium situation exists in the class of piecewise-position strategies U and V of forms (2.1) and (2.2), i.e., the first player's piecewise-position strategy U° exists and for any $\varepsilon > 0$ the second player's piecewise-position strategy V^{ε} exists, such that

 $\sup \gamma (X (t_0, x_0, U^\circ)) = \min_U \sup \gamma (X (t_0, x_0, U)) = \gamma_0$ inf $\gamma (X(t_0, x_0, V^\varepsilon)) + \varepsilon \ge \sup_V \inf \dot{\gamma} (X (t_0, x_0, V)) = \gamma_0$

This theorem can be proved by the scheme in [1]. Strategies U° and V^{ε} can be determined as strategies extremal to appropriate bridges. Let us describe the extremal strategy U° . In this strategy the functionals φ_{k}° associate with function $x[\cdot; t_0, t]$ either a number t_k ($t_k \leqslant t$), which can informally be defined as the instant that the point $(\xi, x[\xi])$ first encountered set M_k , or the improper number ∞ , if this encounter did not take place on the interval $[t_0, t]$. The function α° is defined as follows. In the space of positions (t, x) we define a u-stable W_0 as well as the u-stable bridges W_j (t_{k_3}, \ldots, t_{k_j}) corresponding to the collections of parameters t_{k_1}

 $\leqslant t_{k_1} \leqslant \ldots \leqslant t_{k_j} < \infty$ (1 $\leqslant j \leqslant m - 1$). For the collection $t_k = \infty$, $k = 1, \ldots, m$, the function

$$\alpha^{\circ}(\cdot, t_1, \ldots, t_m): (t, x) \rightarrow \alpha^{\circ}(t, x, t_1, \ldots, t_m)$$
(2.3)

is defined as the position strategy extremal to bridge W_0 . For the collection (t_1, \ldots, t_m) , where $t_{k_1} \leq t_{k_2} \leq \ldots \leq t_{k_j} < \infty$, and the remaining $t_k = \infty$, the function $\alpha^{\circ}(\cdot, t_1, \ldots, t_m)$ of (2.3) is the position strategy extremal to bridge $W_j(t_{k_1}, \ldots, t_{k_j})$. For the collection (t_1, \ldots, t_m) , where $t_k < \infty, k = 1, \ldots, m$, the function $\alpha^{\circ}(\cdot, t_1, \ldots, t_m)$ of (2.3) is chosen arbitrarily.

Thus, on the interval $[t_0, t_{k_1})$ the control u[t] is formed as a position strategy extremal to bridge W_0 ; here t_{k_1} is the instant that an encounter first occurs with one of sets M_k (with set M_{k_1}). Then, on the next interval $[t_{k_1}, t_{k_2})$ before the encounter with the next set (with set M_{k_2}) the control u[t] is called the position strategy extremal to bridge $W_1(t_{k_1})$, and so on. We note that the bridges used here are constructed sequentially, beginning with the determination of bridges $W_{m-1}(t_{k_1}, ..., t_{k_{m-1}})$ and terminating on the target set M_{k_m} no later than at the instant t_{k_m} . The parameters $(t_1, ..., t_m)$ indicated here are such that $\sigma(t_1, ..., t_m) \leq c$, where c is some prescribed number, this being the result guaranteed to the first player if he uses the extremal strategy U° . Next, all possible bridges $W_{m-2}(t_{k_1}, ..., t_{k_{m-2}}), \ldots, W_1(t_{k_1})$ and W_0 are determined in succession. These bridges are such that the extremal strategy U° leads system (1. 1) from each of the bridges W_j onto one of the bridges W_{j+1} and simultaneously onto one of the remaining target sets M_k ; by the same token strategy U° ensures the solution of the problem facing the first player.

3. Let us consider the case when the fulfilment of condition (1.2) is not presumed. We define a strategy U^v as the collection of m functionals φ_k of the form indicated above and of function $\alpha^v : [t_0, \infty) \times \mathbb{R}^n \times Q \times [t_0, \infty]^m \to P$. We assume that this function is Borel-measurable in the variable $v \in Q$. We note that for fixed values of t_1, \ldots, t_m the function $\alpha^v (\cdot, t_1, \ldots, t_m) : [t_0, \infty) \times \mathbb{R}^n \times Q \to P$ is a counter-strategy (see [1], p. 356). To determine the approximate motions $x_{\Delta} [\cdot; t_0, x_0, U^v, v[\cdot]]$ we assume that for a chosen partitioning $\Delta = \{[\tau_i, \tau_{i+1}]: i = 0, 1, \ldots\}$ the strategy U^v forms the first player's control by the rule

$$u_{\Delta}[t] = \alpha^{\nu} (\tau_i, x_{\Delta} [\tau_i; t_0, \tau_i], \nu [t], \varphi_1 (x_{\Delta} [\cdot; t_0, \tau_i])_{i} \dots \varphi_m (x_{\Delta} [\cdot; t_0, \tau_i])), \tau_i \leq t < \tau_{i+1} \quad (i = 0, 1, \dots)$$

where v[t] $(t \ge t_0)$ is a measurable realization of the second player's control. Further, just as in the case of piecewise-position strategy U, we determine the set $X(t_0, x_0, U^{\nu})$ of motions generated by strategy U^{ν} . Strategy U^{ν} can be realized in pair with V. The theorem on the existence of the ε -equilibrium situation is valid for the differential game (1, 1), (1, 3) analyzed in the class of first player's strategies U^{ν} mentioned here and in the class of second player's piecewise-position strategies

V. The ε -equilibrium situation obtains as well for the class of first player's strategies U and of second player's strategies V^u . The definition of these strategies V^u is obtained from the definition of V by replacing in (2, 2) the function β by the function $\beta^u : [t_0, \infty) \times \mathbb{R}^n \times \mathbb{P} \times [t_0, \infty]^m \to Q$. The theorem on the existence of the ε -equilibrium situation in differential game (1, 1), (1, 3) is valid also for the

class of mixed piecewise-position strategies \overline{U} and \overline{V} of both players. To determine these strategies the functions α and β in (2, 1) and (2, 2) should be replaced by the functions $\overline{\alpha} : [t_0, \infty) \times \mathbb{R}^n \times [t_0, \infty]^m \mapsto \overline{P}$ and $\overline{\beta} : [t_0, \infty) \times \mathbb{R}^n \times [t_0, \infty]^m \to \overline{Q}$, where \overline{P} and \overline{Q} are sets of probability measures normed on compacta P and Q, respectively. In the time intervals wherein not even one of the functionals φ_k (or ψ_k) changes its value, the strategy \overline{U} (or \overline{V}) forms the system's motions as a mixed position strategy (see [1]).

The authors thank N. N. Krasovskii for posing the problem and for valuable advice.

REFERENCES

- Krasovskii, N. N. and Subbotin, A. I., Position Differential Games. Moscow, "Nauka", 1974.
- 2. G a b r i e 1 i a n, M. S., Problem on encounter with group controlled objects. Izv. Akad. Nauk ArmSSR, Mekhanika, No. 3, 1976.

Translated by N. H.C.